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Capillary forces exerted by ligquid drops caught between crossed cylinders:
A 3-D meniscus problem with free contact line

T. W. Patzek and L. E. Scriven

Department of Chemical Engineering & Materia.: “:ience,
University of Minnesota, Minneapolis, Minnesota 55455

Abstract

The Young-~Laplace equation is solved for three-dimensional menisci between crossed
cylinders, with either the contact line fixed or the contact angle prescribed, by means of
the Galerkin/finite element method. Shapes are computed, and with them tre practically
important quantities: drop volume, wetted area, capillary pressure force, surface tension
force, and the total force exerted by the drop on each cylinder.

1, Problem statement

A liquid drop between solid fibers (Fig. 1) constitutes a three-phase system whose
thermodynamic aescription may become quite involved (cf. Huh 1969). However, even without
gravity, if the fluid-solid contact line differs from a circle, or two coaxial circles,
the drop surface generally forms a three-dimensional meniscus of ccnstant curvature, dif-
ficult to app.oximate from experiment and non-trivial to compute from theory. 1In large
drops, gravity joins surface tension in the molding of shape and the situa%ion becomes
even more complex. The surface energy of the system in the absence of gravity is

E=o0,,5,+ (0, - 0., S o+ E (1)
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Here the solid surface is rigid and the solid-liquid vapor interactions are -“escribed by
the constant interfacial tensions Ov' Ls’ and Ogy*

Equilibrium drop shapes make the surface energy stationary, i.e. 6E = 0 for all pertur-
bations that leave the drop volume fixed, 6V = 0, and either the contact line fixed,
Sxrsv = 0, or the contact angle unchanged, (ppy+nhg = cosB, where B is the contact
angle). These conditions define a variational problem equivaleat to the Young-Laplace
equation of capillarity — a normal stress balance — with appropriate boundary ccnditions
at the contact line:

capillary pressure.:7

6E = - 2, LV)

S
interface mean
curvature
interface location

normal contact line perturbation, parallel to solid i::f:gﬁ::—-

Oay = ,__=:—-"""—
. § [ sV LVLS]

normal interface perturbation

6x * Diy ds +

Zilit normal to interface

n 6%, . * ;st x QS dL = 0 (2]

fv T Bg T XLv
L ———————
LSV \
unit tangent to contact 1Jn
unit normal to solid surface \\:::ﬁs
Eq. [2]) makes plain that the vanishing variation forces the Young-Laplace reuxdual,
-(py = pL)/opy. and likewise the Young-Dupré residual, cos B -(ogy ~ opg)/0,, , to be

or%Xogonal (as viewed in the appropriate function space) to admissible ncrmal perturba-
tions.

nosine of contact angle g
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A drop of 1liquid trapped between two perpendicular cylinder:- of equal radii is of in-
terest. When the cylinders touch, their point of contact is taken as the origin (Fig. 2).
Spherical coordinates are used to obtain a single-valued representation of the liguid-
vapor interface. A sphere of radius R, equal to the cylinder diameter, is chosen as the
vase surface and is centered at the origin.

The unknown position of the interface, measured in the units of R, is

Analogously, the interface perturbation is

6%y = 5(6,9) e

w [4])

r

Furthermore, in the case of spherical representation, Weincarten's formulas relate the
mean curvature of the interface to the divergence of the unit normal on the unit sphere  :

1

2Ry = " FE.e) e Muy (5

This, together with the diveryence theorem, leads tu the weak form of Eq. [2]:

( Py - pL
j [-nw C Vg (£5) - 20 e) + T o ¢ f']d.‘.‘) +
f

\\;.projected domain on unit sphere

+§ngLv-r_nle\ +
A

‘\\\\\‘ \\\____________projected binormal of contact line

projected contact line

+§('JLV'’~‘s"’°53”'3r"~‘st"'~‘&.‘“‘’0 2

2. Galerkin/finite element method

The main steps of the finite element algorithm can be outlined as follows:

(i) The problem 1s nonlinear and so an initial estimate of drop shape (and contart
line poaition) is needed that falls within the domain of convergence of the
iteration method. Estimate from either analysis of a limiting cate or experi-
mental observations or a blend of both. The last leads to the inside surface of
a small torue as an initial guess.

(ii) To discretize the problem, partition the corresponding spnerical domain (Fig. 3)
into curvilinear quadrilaterals between the equally spaced spines ¢ = constant
(cf. Kistler 1981). The sp.nes remain fixed but the nodes of the quadrilaterals
car. move along them., Let ‘he number of nodes in the partition be N.

(iii) Construct a finite element basis funct:on ¥ (8,¢) for the subdomain around each

node (cf. Brown, Orr, and Scriven 1979):

- choose the biquadratic polynomial on the (£,n)-unit squar=z,

- map each quadrilateral isoparametrically (8,¢) + (£,n) ontc the unit sguare.
This procedure transforms the criginal, free boundary domain & in (6,4)-
coordinates into a fixed square in the map ({,n) (Straag and Fix 1973).

(iv) Approximate the drop shape as

N i
£'9,¢) -iuiv [Q(C,n),¢(€,n)_]

- nodal values a; are the coefficients to be found.
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(v) Approximate the shape perturbation as

N i
2(8,0) = Ly, ¥ [e(z.m, ¢(E.n)]
1

- take Y. as arbitrary coefficients. Because the Y. 's are arbitrary, the
Galerkif weighted residuals — to which Eq. [€] trandforms under (iv) and
{(v) — must vanish at equilibrium. This brings out the direct link between
the Galerkin and variational approach.
(vi) Soive the resulting N nonlinear algebraic equations for the coefficients oy
using Newton's method.
- update the original domain in each iteratica
- use the Jacobian for continuation in the parameter (py - pL)/oLV or V.
(vii) Terminate iteration when the L, norm of residuals, i.e. the largest residual,
is smaller than a preset value, e.g. 10~%® (as was actually used).

The algorithm was programmed in Fortran and executed on a CDC CYBER-74 computer. 1I.
took ca. 2 sec/iteration for 169 unknowns and three to at most five iterations to converge.

A sequence of drop shapes in order of increasing volume is shown in Fig. 4
(R(pv - pL)/o v = LAMBDA). As capillary pressure decreases, the liquid forms drops of
increasing vofume and finally encircles both cylinders. The plotted drops are stable,
including the largest one — the surface of whizh covers more than half of the cylinder
cross-section.

3. Practical quantities

Drops of liquid caught between crossed fibers of non-woven fabrics draw them together
by capillary action and, when the liguid solidifies, fasten the fibers together. Similar
phenomena occur in paper, where water at times forms droplets by capillary condensation
from humid air. Liquid drops between fibers are also present at certain stages of oily
soil removal by detergent action. Furthermore, drop behavior between crossed cylinders
is important to direct measurement of adhesive forces between solid surfaces in the pre-
sence of capillary-condensed liquids (Fishe- and Israelachvili 1981). These and other
applications call for computation of the followinj practically important quantities:

(i) drop volume V
(ii) wette ™ area of each cylinder A
(11i) capil-ary forces exerted by drop

- capillary pressure force (p,, ~ p.) e -+ n ds
\Y L ~LV

sLV

- surfaze tension force o, J e, * my 4L

~2Z
Lisv

- their sum: total force holding crossed cylinders together.

Fig. 5 shows that the total force on the cylinders increases with the wettability of
the solid by the liquid. As can be seen from Fig. 6, the components of total force vary
widely with the drop volume but their sum increases slowly and approaches an asymptotic
limit as the volume shrinks to zero. That limit is 4 w o5y (R/2) cos B (Fisher and
Israelachvili 1981), and becomes a good approximation for R(py - pp)/cpy ~ 104, i.e. for
very small drops. If the mean curvature is taken as the independent parameter, the drop
volume grows extremely sensitive to it as the contact angle decreases (Fig. 7), whereas
the total force again approache< the limit (Fig. 8).

Summary and conclusions

What is described here is an 2xtension cf earlier analyses of three-dimensional menis-
cus shapes (Orr, Brown and Scriven 1977).

Besides yielding equilibrium shapes of drops with fixed eontact lines, as in past 3-D
analyses, the algorithm used here also gives shapes of drops with a preseribed econtact
angle, which is sometimes a closer approximation to reality.

Computations for other cases of 3-D menisci making a prescribed contact angle can be
treated similarly. Augmented by a block-Lanczos method for solving the related
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OMGIMAL T
BLACK AND Wil1e oo =T
eigenproblem (see Brown and Scriven 1980), the algorithm te&sts stability with respect to

admissible perturbations with the contact line fixed. The case of prescribed contact
angle is more difficult but is also being treated in the continuation of this work.

The results show that total capillary fcrce between cylinders increases with decreasing
contact angle, i.e. with better wetting. Capillary force also increases with decreasing
drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder
decreases with decreasing drop volume, which raises the question of the optimum drop vol-
ume to strive ror, when permanent bonding is sought from solidified liquid. For then the
strength of the bond is likely to depend upon the area of contact, which is the wetted
area when the bonding agent was introduced in liquid form.
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Fig. 1. Liquid drop caught between crossed cylinders
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Fig. ¢

Two cylinders of equal radii crossed
at right angle - coordinate system

3

o LOUERCYUW.ER// //‘:'1/‘:1?‘:1”
et
!~ / iy / * ) ot
° Xﬁ; A // . /./‘/ .
LS
LT, // L\

| R i . // . /
§4r~"‘“M:fm/“/‘L/:/‘L/‘/‘ UPPER CYLINDER
P

' i - - - - . ' oo T r- o 1.

Fig. 3

Typical computational domain in spherical coordinates
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Fig. 4

Sequence of drop shapes in order of increasing volume.
Dimensionless capillary pressure R(py-p )/o, = LAMBDA.
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Fig. 7

Drcp volume vs.

capillary pressure
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Fig. 8

Forces exerted by
drop on each cylinder
vs. capillary pressure

L
p
s
3 e
- i
yd
La //{ﬁ'
s
LE /4;‘{
Ve
W f
G- f=200
a-A=3"
+ -4 = 00
Ly x- 8=5°
!-1
T .'. o T TR

IMENSIONLESS VOLUME=Q. 31

Fig. 9

Wetted area on each cylinder vs. drop volume
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